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Abstract: In the classical Op-Amp design some very simple expressions are used, based on a simplified circuit 
model. This could lead to a prototype whose response is not the desired one and the Op-Amp must be 
redesigned. Another possible case is when the designed Op-Amp's response is the desired one but only for a 
certain load, a different load could produce an undesirable behavior or an unstable response. In this paper a two 
stage Miller compensated Op-Amp, designed in 180nm CMOS technology is verified from the point of view of 
phase margin and is optimized from the settling time point of view. To this aim the phase margin symbolic 
expression of the Op-Amp in the open loop is computed starting from poles and zeros symbolic expressions. 
Using this expression, an analysis to evaluate the influence of the Miller and the load capacitance on phase 
margin is performed. This way, the designer can rapidly verify if the response of the Op-Amp is stable for 
various Miller and load capacitances. After that the symbolic expression of the time constant is estimated 
starting from the poles and zeros symbolic expressions of the Op-Amp in the closed loop, function of the Miller 
and load capacitances. The settling time is evaluated for various Miller and load capacitances values to find the 
optimum, smallest time response. The numerical results for phase margin and settling time obtained with this 
algorithm are compared with those computed with SPECTRE RF. 
 
Key-Words: Op-Amp, pole/zero, phase margin, settling time, symbolic expressions, design verification, design 
optimization. 
 
1 Introduction 
 
In analog linear circuits designing, such as filters 
and amplifiers, the symbolic poles and zeros 
expressions of are very useful. These expressions 
can be used in circuit parameter identification or in 
solving stability problems.  
As an example of this problem, the compensation 
capacitance calculation to assure the closed loop 
stability of a two stage operational amplifier (Op-
Amp) for different capacitive loads can be 
considered. In the basic Miller compensation 
technique [1], a capacitance is connected between 
the two amplifier stages. The classical design 
procedure is based on a simplified circuit model 
having two left half plane poles and one right half 
plane zero frequency response for the amplifier in 
open loop configuration [2, 3, 4]. In figure 1 is 
presented a  schematic of a typical two stage 
operational amplifier with Miller compensation, 
designed in 180nm CMOS technology. The 
compensation network is composed of the CM 
capacitance connected across the two stages of the 
amplifier. Some papers presents that actually the 

open loop Op-Amp transfer function is described by 
three poles and one zero [5, 6, 7]. Numerical 
pole/zero computation with software like SPECTRE 
RF and HSPICE [8] show that the number of poles 
and zeros is larger. 
In this paper we compute the numerical values and 
the simplified symbolic expressions of all four poles 
and three zeros of an open loop and closed loop 
operational amplifier. Section 2 described in brief 
the algorithm used to compute the poles/zeros 
numerical and symbolical expressions based on LR 
iterations together with some simplifications This 
algorithm can be found in [9, 10, 11]. Also in this 
section a two stage Op-Amp with Miller 
compensation, used with a capacitive load is used to 
obtain the poles and zeros numerical values and the 
simplified symbolic expressions with our algorithm. 
The poles/zeros numerical values are compared with 
those given by SPECTRE RF. In Section 3 the 
symbolic transfer function for the Op-Amp in open 
loop is obtained. The symbolic phase margin (PM) 
expression is then obtained and is used to 
investigate the validity range for the compensation 
and for the load capacitance set of the Op-Amp 
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mentioned above. This Op-Amp was design for a 
PM around 90°. In Section 4 the symbolic transfer 
function for the Op-Amp in closed loop is 
computed. Starting from this expression the time 
constant is estimated and the settling time of the 
circuit is improved. Finally, Section 5 presents some 
conclusions. 
 
 
2 Example 
 
Consider a linear circuit for which the state 
equations in the normal form are: 
 

 uEBuAxx && ++=   (1) 
 
and the output equations are: 
 

 duCxy +=    (2) 
 
where x is the state variable vector, A is the state 
matrix, u is the input vector having only one 
component for this example, y is the output vector 
having only one component, d is a scalar, and the B, 
E and C are matrices having appropriate 
dimensions. The entries of all these matrices are 
ratios of polynomials in terms of the circuit 
parameters. 
The state matrix A can be computed using the 
algorithm for the computation of the symbolic 
hybrid matrix of a resistive multiport [8] and 
improved in [10] and [11].  
The poles are the eigenvalues of the A matrix, and 
the zeros are the eigenvalues of the “state-like” 
matrix A’ and can be computed using the equation 3 
or with the algorithm in [12] or [13]. 
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Figure 1 presents a two stage Op-Amp with Miller 
compensation designed in the 180nm technology, 
and figure 2 presents the test-bench circuit. Using 
the DC operating point analysis from SPECTRE RF, 
the transistors small signal parameters have been 
extracted (Fig. 3). 
To obtain the same frequency and time response 
with a circuit having the minimum number of circuit 
elements, two CMOS equivalent circuit models 
have been tested (Fig. 3 and Fig. 4). The frequency 
response obtained with this two models (the AC 
analysis from SPECTRE RF) presented in figure 5, 
are almost the same. 

The Op-Amp in figure 1 has been simulated with 
SPECTRE RF and the algorithm presented in [11]. 
In this picture in red is the response of the Op-Amp 
using the first CMOS model (the magnitude in dB 
and the phase in degree of the output voltage), and 
in green is the response using the second model. 

 
Fig. 1 A two stage Op-Amp Miller compensated 

 

 
Fig. 2 The test-bench circuit 

 

 
Fig. 3 The first CMOS equivalent circuit used 
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Fig. 4 The second CMOS equivalent circuit used 

 
It can be seen that for a reasonable wide frequency 
range, the two models have the same frequency 
response. For this reason, for further analysis the 
second, simple, CMOS model will be used. 

 
Fig. 5 The Op-Amp frequency response computed 
with SPECTRE RF using models in Fig. 3 and 4 

 
Table 1 and Table 2 presents the numerical results 
for the poles and zeros obtained with the proposed 
algorithm and with SPECTRE RF. 
 

Table 1. Poles values [Hz] 
Our algorithm SPECTRE RF 

p1 -3.68 -3.43 
p2 -1.31 106 -1.39 106 
p3 -2.32 107 -2.32 107 
p4 -1.02 1012 - 

 
TABLE 2. Zeros values [HZ] 

Our algorithm SPECTRE RF 
z1 7.86 106 8.65 106 
z2 1.50 107 1.50 107 
z3 -2.38 107 - 

 
Both frequency characteristic, computed with 
SPECTRE RF and with our algorithm (figure 5 and 
figure 6) exhibit a pole around the 1012 Hz. The PZ 

analysis from SPECTRE cannot compute it even 
though the analysis accuracy is increased (Table 1). 

 
Fig. 6 The Op-Amp frequency response obtained 

with our algorithm 
 
The poles approximate symbolic expressions 
obtained with the algorithm presented in [11] are 
given in Table 3 together with the relative error to 
the numerical poles: 
 

Table 3. Approximate symbolic pole expressions 
pole The simplified expression Error [%] 
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Table 4 contain the zeros approximate symbolic 
expressions obtained with the same algorithm, 
together with the relative error to the numerical 
zeros. 
Only the symbols with the greatest differential 
sensitivities are kept in these expressions, the others 
being replaced with their numerical values. Having 
these expressions is interesting to observe what part 
of the circuit gives each of the pole and zero. 
All poles/zeros simplified expressions are compared 
with the eigenvalues numerically computed for a 

%30±  range of the nominal parameter value. 
There is a very good agreement between these 
simplified expresions and the numerical values, the 
maximum error in the nominal point being less than 
4%. 
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Table 4. Approximate symbolic zero expressions 

zero Simplified expression Error 
[%] 
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3 The phase margin verification 
 
The transfer function of the Op-Amp in open loop is 
computed with the following formulae using the 
simplified pole/zero expressions: 
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Keeping as symbols only the Miller and the load 
capacitances it result: 
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The symbolic phase margin expression is obtained 
using the well known formulae [14]: 
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and: 
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The gcω  is the pulsation for the unit magnitude, 
computed solving: 
 

( ) 1
2
=gcop jH ω   (7) 

or: 

( ) ( ) 22

gcopgcop jDjN ωω =   (8) 

 
where Nop is the nominator and Dop is the 
denominator of the transfer function. 
Using the nominal parameters (Cout = 20pF, CM = 
1.8pF), the values in Table 5 are obtained for PM. 
Having the symbolic expression is very useful to 
verify the influence of various circuit parameters on 
the PM. For example in figure 7 the phase margin 
variation with CM and Cout can be observed. The 
stability range for PM is between 45° and 135° and 
the Op-Amp was design to have a phase margin 
around 90°. In green is the phase margin computed 
with the symbolic expression, in blue is the phase 
margin computed by SPECTRE RF and the red dot 
is the value of phase margin in the nominal design 
point. 
 

Table 5. Numerical phase margin 
Our algorithm SPECTRE RF 

PM 89.04° 89.24° 
 
In Table 6, using the PM symbolic expression, some 
values are computed showing the validity range for 
CM, Cout pair, and the relative errors εrel to numerical 
values obtained with the PZ analysis from 
SPECTRE RF are given in Table 7. 

 
Fig. 7 PM as a function of CM and the Cout 

capacitances 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Alexandru Gabriel Gheorghe

E-ISSN: 2224-266X 183 Volume 17, 2018



 
Table 6. PM for various CM, Cout computed with the 

symbolic expression and with SPECTRE RF. 
Cout 
 
CM 

20 fF 0.2 pF 2.0 pF 20 pF 0.2 nF 

0.2 pF 
89.92 89.91 89.85 89.24 83.17 
89.05 89.00 88.50 83.47 51.76 

2.0 pF 
89.75 89.75 89.69 89.08 83.00 
89.87 89.86 89.81 89.31 84.38 

20 pF 
89.15 89.15 89.08 88.47 82.40 
89.95 89.95 89.94 89.89 89.39 

0.2 nF 
83.26 83.26 83.19 82.58 76.51 
89.96 89.96 89.95 89.95 89.90 

 
Table 7. The relative error εrel [%] between the 
symbolic expressions and the numerical results 

Cout 
 
CM 

20 fF 0.2 pF 2.0 pF 20 pF 0.2 nF 

0.2 pF 0.97 1.02 1.50 6.47 37.76 
2.0 pF 0.13 0.13 0.14 0.26 1.66 
20 pF 0.90 0.90 0.96 1.60 8.48 
0.2 nF 8.05 8.05 8.12 8.92 17.50 
 
Analysing the figure 7 and table 6 it can be observed 
that in order to maintain the phase margin around 
90°, the Miller capacitance can be varied in the 
sense of increasing it and the load capacitance can 
be varied in the sense of decreasing it (Fig. 8). 

 
Fig. 8 The validity range of the PM as a function of 

CM and the Cout capacitances 
 
 
4 The settling time optimization 
 
Starting from the transfer function computed for the 
Op-Amp in open loop, the closed loop transfer 
function is: 

 

( ) ( )sH
sH

op
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=
1

1
  (9) 

 
In order to compute the settling time, the amplifier's 
response to the unit step input voltage is computed 
as: 
 

( )
s
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   (10) 

 
Keeping as symbol only the s variable and 
expanding in partial fraction the above function, the 
following expression is obtained: 
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The time domain response to the unit step is 
computed as the inverse Laplace transform: 
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The dominant term is te

41091.901.11 ⋅−−  which gives 
the time constant: 
 

sμτ 01.10
1091.9

1
4 =

⋅
=  (13) 

 
The Settling Time (ST) is the time to reach and stay 
within a specified percentage of the final value and 
can be computed function of the time constant as: 
 

sST μτ 03.303 =⋅=  for a 5% error, 
sST μτ 04.404 =⋅=  for a 2% error, 
sST μτ 05.505 =⋅=  for a 1% error. 

 
In order to improve the ST in the sense of 
decreasing it, CM and Cout are swept around the 
design point from the validity range of the PM (Fig. 
9). 
The time constant variation with CM and Cout can be 
found in the graphic in figure 9 and in table 8. 
A similar procedure can be used also for the 
operational amplifiers having a complex-conjugate 
pair of poles [14]. 
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Fig. 9 Time constant as a function of Miller and the 

load capacitance 
 
Figure 10 presents the time step response of the Op-
Amp in the design point (in red) and the improved 
one (in green). 
 
Table 8. Time constant (in seconds) for various CM 

and Cout 
CM 
 
Cout 

1.80p 5.04p 8.28p 11.5p 14.7p 

4.00p 51.2u 143u 235u 327u 420u 
19.2p 10.5u 29.7u 49.0u 68.0u 87.7u 
34.4p 5.71u 16.4u 27.1u 37.8u 48.5u 
49.6p 3.75u 11.2u 18.6u 26.0u 33.5u 
64.8p 2.65u 8.40u 14.0u 19.7u 25.4u 
 

 
Fig. 10 Settling Time for two sets of Miller and the 

load capacitance 
 
 

5 Conclusions 
 
A procedure implemented in MAPLE is used to 
compute both numerical and symbolical poles/zeros, 
the transfer functions, the phase margin and the 
settling time expressions. This procedure can be 
used to verify a circuit design and to improve it if 
needed. 
First, the symbolic expression of the phase margin is 
computed as a function of Miller and of the load 
capacitances for an operational amplifier in open 
loop designed in 180nm technology. Sweeping  both 
capacitances, the validity range of the desired phase 
margin can be easily obtained. 
Second, the symbolic expression of the time 
constant which is used to evaluate the settling time 
is computed function of Miller and the load 
capacitance for the operational amplifier in closed 
loop. Varying both capacitances, the optimum time 
constant can be easily obtained. 
Of course these symbolic expression can be 
obtained as a function of other symbols if desired. 
Having the poles, zeros, the phase margin and the 
settling time expressions, is interesting to see what 
part of the circuit gives each of these expressions 
and gives the designers the possibility to modify the 
project, adjusting only a small part of the circuit 
(e.g. a transistor, a capacitor or a resistor) in order to 
correct or to improve the design. 
The numerical results have been compared with 
those obtained using SPECTRE RF. In this case, 
even though the frequency characteristic exhibit a 
pole in the range of 1012 Hz, the PZ analysis from 
SPECTRE RF cannot compute it even though the 
accuracy is increased. 
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